安装指南 =========== 本文将介绍如何在昇腾环境下使用transfomers,帮助开发者完成transformers的安装。 .. note:: 请确保环境安装了对应的固件和驱动,详情请参考 `快速安装昇腾环境 <../ascend/quick_install.html>`_。 创建虚拟环境 -------------------- 首先需要安装并激活python环境: .. code-block:: shell conda create -n your_env_name python=3.10 conda activate your_env_name 同时安装依赖库: .. code-block:: shell # install torch pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple torch==2.2.0 # install torch-npu pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple torch-npu==2.2.0 安装transformers ---------------------- 直接使用pip命令进行安装: .. code-block:: shell pip install -i https://pypi.tuna.tsinghua.edu.cn/simple transformers 验证安装 -------------------- .. code-block:: python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline import torch import torch_npu # 检查 NPU 是否可用 if torch.npu.is_available(): device = torch.device("npu:0") print("NPU is available. Using NPU.") else: device = torch.device("cpu") print("NPU is not available. Using CPU.") model_id = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) model.to(device) nlp_pipeline = pipeline( "sentiment-analysis", model=model, tokenizer=tokenizer, device=0 if torch.npu.is_available() else -1 ) #分析句子情感并输出 result = nlp_pipeline("This is a test sentence.") print(result) 如果成功运行并输出下面内容,则安装成功: .. code-block:: shell NPU is available. Using NPU. Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. [{'label': 'POSITIVE', 'score': 0.9998704791069031}] 卸载transformers --------------------- .. code-block:: shell pip uninstall transformers